

AI + Distributed System

Hao Wang IntelliSys Lab

- 09/2015-08/2020
- 01/2021-present

- AI + Distributed System
- 17 published papers
- 624 citations
- Projects sponsored by
 - NSERC, Huawei Canada, Orbis Investment...

ML Training / Inference

Big Data Analytics

Video Processing

. . .

Performance

Adaptivity

Robustness

•••

Reinforcement Learning

Federated Learning

Transfer Learning

. . . .

Topic #1

Federated Learning

Siri

Alexa

Federated Averaging Algorithm (FedAvg)

Initial model

Local data

Random selection

Local model

Local data

Thank you for the feedback

Local model

Local data

Projects Done

• Optimizing Federated Learning on Non-IID Data with Reinforcement Learning

[INFOCOM'20]

- Federated learning
- Client selection

- Reinforcement learning

ML algorithms assume the training data is independent and identically distributed (IID)

algorithms but on non-ID data

Federated Learning reuses the existing ML

Build IID training data? No

data privacy

Peeking into the data distribution on each device without violating

Probing the bias of non-IID data

Carefully select devices to balance the bias introduced by non-IID data

Non-IID data

6666637 80% data has the same label, e.g, "6"

Initial model

Local model

100 devices, each has 600 samples

A two-layer CNN model with 431,080 parameters

We apply Principle Component Analysis (PCA) to reduce dimensionality

How to select participating clients?

Projects Done

 SpaceDML: Enabling Distributed Machine Learning in Space Information Networks

[IEEE Network]

- Federated learning
- Model compression
- Space information network

Projects Ongoing

- Byzantine-robust Federated Learning
 - Federated learning
 - Byzantine attacks
 - Security & privacy

- Winit

- **Debugging Federated Learning**
- Mitigating stragglers
- Model tuning & testing
- Personalized federated learning

Topic #2

Serverless Computing

What is Serverless?

	Serverless
ur	Per call
erver	Functions
rs	By providers
22	AWS Lambda

Traditional Cloud

Severless Cloud

Projects Done

- Distributed Machine Learning with a Serverless Architecture
- [INFOCOM'19]

- Serverless ML system
- Resource provisioning

A General ML Workflow

Loss rate

Training & Evaluation

KV Storage

AWS S3

Redis

epoch t

 $\bullet \bullet \bullet$

 $\bullet \bullet \bullet$

Reward r_t

$\pi(\mathbf{a}_t | \mathbf{s}_{t-1}, \theta)$

Action \mathbf{a}_t

Functions

Environment

Projects Ongoing

- Resource Provisioning for Serverless
 - Resource rebalancing
 - Function acceleration

Projects Ongoing

Functions

- Optimizing Serverless
 - Function cold start

- Resource provisioning
- New Serverless Applications
 - Serverless scientific computing
 - Serverless high performance computing

Wrap-up

- Federated Learning
 - Performance: stragglers, debugging
 - Security: Byzantine attacks & defense
- Serverless Computing
 - Cold start & other performance issues

- New serverless applications

