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Topic #1

Federated Learning
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Sure. Umami burger?

Yeah. Know the address?

738 E. 3rd St.
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Federated Averaging Algorithm (FedAvg) @
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Update global model
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Projects Done

* Optimizing Federated Learning on Non-
lID Data with Reinforcement Learning

 [INFOCOM’20]
- Federated learning
- Client selection

- Reinforcement learning




ML algorithms assume the training data is
iIndependent and identically distributed (11D)



Federated Learning reuses the existing ML
algorithms but on data
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Build IID training data? No

Peeking into the data distribution
on each device without violating
data privacy

Probing the bias of non-IID data
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EE! 100 devices, each has 600 samples

non-iDdata (G K KA Y IS I K B2

80% data has the same label, e.g, "6"

Initial model Q

¢ A two-layer CNN model with

431,080 parameters
Local model Q
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We apply Principle Component Analysis
(PCA) to reduce dimensionality

431 080-dimension model weight 9 2-dimension space
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How to select participating clients?
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Projects Done

pevics 165, s ¢ SpaceDML: Enabling Distributed Machine
pevice EEB{eEB Learning in Space Information Networks
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R - Federated learning

- Model compression
> izl K - Space information network
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Projects Ongoing

© ® Q » Byzantine-robust Federated Learning
BOE-8 ~
- Federated learning
[E é_w ettt - Byzantine attacks
{ | | A A - Security & privacy
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Debugging Federated Learning

- Mitigating stragglers
- Model tuning & testing

- Personalized federated learning
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Serverless Computing
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What is Serverless?

EER Serverless
Pricing Per hour Per call
Resources Virtual Server Functions
Maintanance By users By providers
Examples AWS EC?2 INVERET ] o] F
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Traditional Cloud Severless Cloud
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Projects Done

* Distributed Machine Learning with a
Serverless Architecture

. [INFOCOM’'19]

gLl - Serverless ML system

- Resource provisioning




A General ML Workflow
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Code
package

- Cloud

Resource allocation Function status

states .
Function o
—
Client
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Projects Ongoing

[Func req 1 ] [Func req N ] ¢ Resource PFOVISIOﬂIng fOr ServeHeSS
Con!m,,er Frepr - Resource rebalancing
‘ allocation{ - Function acceleration
=: Database Taie » KV Storage
T Distributed Message Queue
(results, usage) (Pub/Sub)

l (CPU, mem) allocation

Invoker Mﬂ:« Waiting Queue
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Projects Ongoing

e Optimizing Serverless

- Function cold start

Functions - Resource provisioning
> >

e

 New Serverless Applications

- Serverless scientific computing

- Serverless high performance computing




* Federated Learning
- Performance: stragglers, debugging
- Security: Byzantine attacks & defense

e Serverless Computing

- Cold start & other performance issues

- New serverless applications
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