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What is federated learning?
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— 4, Data stored on worker nodes are not IID.

— 5. The amount of data is severely

The i-th worker performs:
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a) Using w and its local data to compute gradient g. [1]H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.

A. y Arcas, "Communication-Efficient Learning of Deep
Networks from Decentralized Data,” arXiv:1602.05629 [cs],
Feb. 2016, Accessed: Jun. 07, 2019.

1: Aggregator: initialize weight wg, currentTier = 1, TestDatay,
Credits;, equal probability with a}, for each tier t.
2. foreachroundr =0to N - 1do

/* Participant selection for each round. */
4 Function SelectParticipant (C, K, &, T, o)
5 Util —0; R — R+ 1

b) Local update: w«w—a-g.

3. Sending W; = w to the server.
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